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Abstract. Using the replica method, we present the replica symmetric solutions of the 
graph-bipartitioning problem with fixed, finite valence. With the constraint I::, S, = 0 
strictly enforced, we are able to find another solution which gives a lower cost function 
than that given by the spin glass solution. 

1. Introduction 

Recently, methods of the statistical mechanics of random systems have been frequently 
applied to the study of hard optimisation problems. Several authors have discussed 
the application of the replica method [ 11 in the combinatorial optimisation problems 
[2,3]. The central idea is to map the optimisation problem onto a certain spin 
Hamiltonian. Then the quantity to be optimised, hereafter referred to as the cost 
function, is related to the ground-state energy of the corresponding spin Hamiltonian. 
In general, the major hurdle is the computation of the quenched average. However, 
there are usually additional constraints imposed on the spin variables. For example, 
in the study of the travelling salesman problem, we have to either introduce permutation 
group elements [4] or use p-vector spin variables [ 5 ]  and take the limit p + O  at the 
end. In the so-called graph-bipartitioning problem [2], we have the additional con- 
straint of ZE, s, = O .  In treating these constraints, great care must be exercised in 
order to find the optimal solution. 

In a recent paper [ 6 ] ,  I demonstrated that, in the graph-bipartitioning problem 
with average, finite valence [7-91, it is incorrect to replace the constraint, Z;”=, S, =0,  
by a soft version of the constraint, namely exp[-A(Z:, S,)’] with A >> 1, in the 
calculation of the canonical partition function. It was explicitly shown that the 
constraint must be strictly enforced in order to obtain the optimal solution consistent 
with the exact result on the size of the infinite cluster by Erdos and Renyi [lo]. 

In this paper, the same technique is applied to the graph-bipartitioning problem 
with fixed, finite valence. In many aspects, this approach is quite similar to that of 
Wong and Sherrington [ l l ] .  However, with the constraint strictly enforced, we are 
able to find another solution which gives a lower cost function than that given by the 
spin glass solution. Unfortunately, the known numerical study [12] was done with a 
soft version of the constraint (i.e. with the exponential penalty term, exp[-A(ZE, SI)’], 
A >> 1, in the partition function). We are thus unable to confront our solution with 
‘experimental’ data. 
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The organisation of the paper is as follows: In 9 2 we define the model and show 
details of the calculation. The replica method is used to obtain the replica symmetric 
solutions. In 8 3,  some suggestions for future work are discussed. 

2. The model and the replica theory 

The problem that we consider is as follows. We are given a set of vertices V =  
( V I ,  V , ,  . , . , V N ) ,  with N even, and a set of edges E = {( V,, y ) ;  i # j } .  Let each vertex 
be connected with b edges, where b E { 1,2 , .  . . , N - 1). The bipartitioning problem is 
to divide V into two parts of equal size in such a way as to minimise the number of 
edges, N,, connecting these two parts. N, is thus our cost function. We are then 
interested in the behaviour of N,/  N, in the limit N + CO, as a function of b. 

Following Fu and Anderson [2], we attach a spin variable S, = {*1} to each vertex 
V,. We want to divide V into two equal parts, say GI and G2. Then S, = 1 means that 
the vertex V, belongs to GI; S, = - 1  means that the vertex V,  belongs to G,. We also 
use the bond variable, J,,, to represent the edge (V,,  V,). Then the condition of fixed, 
finite valence is equivalent to 

J,, E{O, J }  with J,, = O  (2.1) 
N 1 J,, = bJ for all i = 1,2,. . . , N 

J = 1  
( 2 . 2 )  

J,, = J would correspond to the case where the edge (V , ,  V,) is present; J,, = 0 would 
correspond to the case where the edge ( V , ,  V,) is absent. Then the cost function, 
averaged over all possible bond configurations, is: 

(2.3) 

The constraint, Z;"=, SI = 0, guarantees that we indeed divide V into two parts of equal 
size. Here ( . . . means the average over all possible bond configurations. Hence, 
to minimise (NJa, is to find the ground-state energy of the Hamiltonian in equation 
(2.4), subject to the corresponding constraint. 

Using the replica method, we now proceed to compute the quenched free energy: 

(Zm)a, - 1 (In Z)av = lim 
m - o  m (2 .5 )  
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where we have used the integral representation of the Kronecker S function. We also 
have: 

= 12* ( n >) dY exp( -i by,) fi (1 +exp[i(y, + y,)]}. 
0 ,=127T , = I  ,iJ 

Now we notice that, if we replace: 
N IT {l+exp[i(yl+yJ)l} 

1 <J 

by 
N /  X \ 

(2.10) 

(2.11) 

we do not affect the value of g, provided that the new series, in equation (2.11), is 
convergent. This is the motivation for introducing: 

c€ 

Zb+I+ CkZk. (2.12) 
b + 1  k = b + 2  

Equation (2.12) is easily proved, using the mathematical induction on b. Hence, we 
arrive at: 

Using the Gaussian transform: 

exp( Ax‘) = (E) I ”  d r  exp[-iNr’+ (2AN)’”xrI 

we get: 
b 

g = I* --3c [ n = l  fi dra] exp( -$N a = l  1 r i +  N In X 

(2.13) 

(2.14) 

(2.15) 

exp(2iay) . 11 X=j02*$exp[  -iby+;, [(y ( - 1 ) O - l  N )  1 / 2  r, exp(iay)-- (-1),+’ 
2a 

(2.16) 

In the limit N+m, we only have to find out the leading term in N inside the curly 
brace of equation (2.16). We first notice that: 

(2.17) 
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Hence, the leading term in N, after the integration over y ,  is (mrl)b/b!, and the next 
term is of the order of (m)b-l, and so on. By the saddle-point approximation, we 
finally get: 

. (2.18) 

Following the derivation for g, equation (2.7) can be written as: 

Following the derivations of equations (2.15), (2.17) and (2.18), it is easily proved that 
in the thermodynamic limit only the term with a = 1 in equation (2.19) matters. Using 
equation (2.14) and: 

13 m 

/ = I  e l <  <cl) 

A, = tanh’( p J )  coshm( p J )  (2.21) 

exp p J  SPSp = A o +  A, (SPl.. . SPl)(Spi.. . Spf )  (2.20) ) ( a=1 

m 

Ao=Cosh”( PJ) 
we derive the following expression (letting rl = r ’ ) :  

Again, using the integral representation of the Kronecker 6 function, we find that: 

N 

x a l c . . . c u f  i qal.,.als~l . . . exp(iy))] . 

Hence, for large N, we get the following expression for (Z”) , , :  

(2.23) 

(2.24) 
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Let us now make the replica symmetry assumption and let: 

qu, a ,  = ( b A / ) 1 ' 2 Q /  r' = ( bA,)'"r. (2.26) 

The saddle-point approximation then gives: 

(Zm)a,=-exp{-N[-r 1 bA, b 
g 2 

int = lo2= fi 2 [ TJ exp 
o = l  { S  i 

N 

(( N b ) 1 / 2 A o r  + 'f ( N b  )'"A,Q, f Sal . . . Sui)  
I =  1  U , <  < a ,  $1 . 

We also have to look for the saddle points o f  

(2.27) 

(2.28) 

(2.29) 

Let us now introduce the auxiliary field distribution function ~ ( h ) :  
X 

Q, = i-, tanh'( p h ) r ( h )  dh (2.30) 

~ ( h )  dh = 1 .  (2.31) 

The self-consistency check for equations (2.30) and (2.31) will be presented in the 
appendix. Putting equation (2.30) into equation (2.27), we get 

(2.32) 

py = tanh-'[tanh( p J )  tanh( p h ) ]  

pz = tanh-'[tanh( p J )  t anh (ph)  tanh( p h ' ) ] .  

(2.33) 

(2.34) 

(2.35) 
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We first notice that: 

cosh"( P a ,  = 1 y a , )  ( 7 T ( h a ' )  dhu'  cosh"( Pya,)  

(2.36) 

where E denotes the sum over all possible sets of { k , ;  i = 1 , 2 , .  . . , N }  with k, E 

(0, 1 , 2 , .  . . , b} .  Let us look at a particular set of { k ! ;  i = 1 , 2 , .  . . , N }  in E. We get: 

We now proceed to take the limit m + 0. By using: 

x x  

z - ( h ) ~ ( h ' )  dh dh ' [ lncosh (pz ) -pz ]  
= -m L 

and after much tedious algebra, we get 
lim (Z"),, = l e x p [  - N [ :  r 2 - l n ( l )  (m)b - b In r] - N X }  

g m-0 

~ ( h )  dh  In cosh( p y )  

(2.37) 

(2.38) 

(2.39) 

-kIx 5'; . i r (h) . rr (h ' )dh  dh ' [ lncosh (pz ) -pz ]  
2 -x  - x  

(2.40) 
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From equation (2.181, we see that the saddle-point solution for r must be r = 1, so that 
the limit m + 0 can be consistently carried out. We finally arrive at: 

lim w = b l n c o s h i p l i + b l '  Ix . r r ( h ) r ( h ' ) d h  dh ' [ lncosh(pz) - / lz ]  
N - *  N 2 2 --x - x  

(2.42) 

Equations (2.42) and (2.43) are valid for any T. However, the complexity of the last 
term makes it impossible to carry out the numerical calculation at finite T. Fortunately, 
the algebra simplifies considerably at T = 0. On physical grounds, .rr( h )  might have, 
at T = 0, the following form: 

h h 

~ ( h ) = ~ o S ( h ) +  C r f G ( h - N ) +  r ; S ( h + I J ) .  (2.44) 
I =  I / = I  

In the appendix, we shall check the self-consistency of the above ansatz. Let 

By using: 

i f h > J  
if O S  h s J lim tanh-'[tanh( P J )  tanh( P h ) ]  = lim ,By = 

P - x  P-' 
(2.45) 

we finally arrive at: 

) In(G) (2.46) 
b ! (  1 - Q)'l[+( Q+ R)]"1-"[4( Q -  R) lh-" '  

( U , )  !(U, - v,) !( b - U , )  ! 

dxfl  { e ' x [ 1 + t a n h ( 2 u , - ~ , - b ) ~ J ] + e - ' X [ 1  - t anh(2u , -v , -b )PJ I}  (2.47) 
2 7  

1 
+xiid!, 

2 7  N 
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where denotes the sum over all possible combinations of {U,, U,; i = 1 , 2 , .  , . , N }  for 
a given fixed b E { 1,2, . . . }. Let us now concentrate on equation (2.47). There are total 
of N ! / ( N / 2 ) ! ( N / 2 ) !  terms that survive the integration over X .  Each one of them is 
of the following form: 
' c ?  Y 

, = I  I=  W / 2 - l  
n (1 + t a n h [ 2 ~ ( u , )  - u ( u , )  - b]PJ} n 11 - t anh[2a (u , )  - u ( u , )  - b]PJ} (2.48) 

where U is a permutation on the set {U,, U,; i = 1,2 ,  . . . , N}. 
Using the fact that: 

lim In( 1 - tanh X )  = In 2 - 2 X  + O(e-2') (2.49) 
X - X  

we observe the following. In the product 

n {e'"[l +tanh(2u, - U ,  - b)PJ ]+e - 'X[ l  - tanh(2u, - U ,  - b)PJ]} 
h' 

r = 1  

(2.50) 

if there are less than N / 2  + 1 terms with 2u, - U, - b > 0 and less than N / 2  + 1 terms 
with 2u, - U, - b < 0, then the dominant term, surviving the integration and  in the limit 
j3 +CO, is 2"-M where M is the number of terms with 2u, - U, - b = 0. In this case, 
there is no contribution to the ground-state energy. 

In order to understand more about the last term in equation (2.46), let us look at 
the collection of sets { u ~ ,  U,; i = 1 , 2 , .  . . , N } ,  with exactly N / 2 +  1 number of terms 
satisfying 2u, - U, - b > 0. First, we introduce the following notation: 

(2.51) 
b U b ! ( l - Q ) ' [ ~ ( Q + R ) ] " - " [ I ( Q - R ) l b - "  

U !(U - U )  !( b - U )  ! 
f r ac (n )=  C 

u = o  c = o  

By its very definition, frac( n )  is the fraction of spins feeling nJ local field at T = 0. 
Then, we see that 

h j 2 - l  

(2.52) 
N! 

( N / 2 + 1 ) ! ( N / 2 - 1 ) !  n = - b  

generates all possible sets in this collection. If a particular set contains at least one 
term with 2u - U - b = 1, it will contribute -2PJ, in the limit /? + ic. If a particular set 
contains no terms with 2u - U  - b = 1, but at least one term with 2u - U - b = 2, it will 
contribute -4pJ  in the ground state. 

We can apply similar considerations to any collection of sets with exactly N / 2  + 1, 
1 = 1 , 2 , .  . . , N / 2  number of terms satisfying either 2u, - U, - b > 0 or 2u, - U ,  - b < 0. 
Then by collecting only terms that are extensive, we get 

n = - h  n = O  
(2.53) 

As N + ic, the binomial distribution approaches the normal distribution asymptotically. 
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We finally arrive at: 

. R ' )  + b ( i  - 
h 

Q ) +  1 f r a c ( n ) l n l + B + C  (2.54) 
n = - h  

b 

if f r a c ( n ) a i  

Nc b E,, 
- +-. 

N 4 2 N J  

(2.55) 

(2.56) 

(2.57) 

The strict enforcement of the constraint 2?Ll S, = 0 introduces two extra terms, 
namely B and C. The reason that we have two extra terms, instead of one, is due to 
R e - R  symmetry in the problem. We now have to look for saddle-point solutions of 
equation (2.54). There are two sets of saddle-point solutions. The first is the spin glass 
solution. The equation satisfied by Q is: 

1 2 ~  - U -  bl Q=1------ ( b - I ) !  ( ( b - u ) ( l - Q ) L ( $ Q ) b - L - '  - 2(1- Q,"-'(;Q)b-- '  
2 u = o  i = O  c ! ( u - ~ ) ! ( b  - U ) !  ( u - l ) ! ( u  - U ) ! ( b -  U)! 

(2.58) 

and R = 0 for all b 3 3. It is easy to verify that, for b 2 3, this solution gives 

frac(n) = frac( - n )  (2.59) 

(2.60) 

Equation (2.60) approaches 4 only when b + E. This is the solution obtained by Mezard 
and Parisi [7] and by Wong and Sherrington [ l l ] .  

However, there is another saddle-point solution to equation (2.54). It is a well 
known fact that when we look for extrema in a closed set, we have to check both the 
boundary (in this case, among those Q and R satisfying 2:=-b  frac(n) =+) and the 
interior (among those Q and R satisfying Z:=-,,frac(n)<i). When we look for the 
saddle points within the interior, we discover non-physical solutions. ( Q  = R = 1 for 
all b = 3,4 ,  5, etc.) Hence we have to look for the saddle points on the boundary. 
That is, we first demand: 

0 
f r a c ( n ) = i .  

n = - b  
(2.61) 

Then among those Q and R satisfying equation (2.61), we look for the saddle points 
O f  

b 

f ( Q , R ,  b ) = $ b ( Q ' - R ' ) + b ( $ - Q ) +  1 frac(n)ln/ .  (2.62) 

The physical picture is also clear. With this solution, we let those spins feeling positive 
local fields point up. The rest of the spins, feeling zero or  negative local fields, must 

n = - b  
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point down in order to satisfy the constraint X E  I S, = 0. This solution breaks the 
symmetry of f rac(n) t t f rac(-n)  maximally, and thus the frustration is not as severe 
as in the spin glass solution. Hence it will give a lower cost function than that given 
by the spin glass solution. 

As shown in table 1, R decreases monotonically as a function of b. R approaches 
0 only when b + w .  As b + w ,  we recover the replica symmetric solution of the S K  

model. For b = 1,2 ,3 ,  we have 
0 

f r a c ( n ) = l - i ( Q + R )  (2.63) 

frac(n) = 1 - Q -  R+@R+&’-+R‘ 

n = - l  

0 
(2.64) 

n = - 2  

0 

frac(n) = 1 - ;Q - 3 ~  + - 2 ~ 2  4 . .  + ;QR - 4 4 4  Z Q ~ +  L R ~  - 2 ~ 2 ~  + ‘ Q R ~  (2.65) 

f ( Q , R ,  l )=;(Q’-R’)+f  (2.66) 

f ( Q ,  R, 2) = 1 (2.67) 

f (  Q, R, 3) = $-$(Q’- R’- Q3+ QR2).  (2.68) 

For b = 1 ,  X z = - l  frac(n) = implies Q +  R = 1 .  But then equation (2.66) has no saddle 
point. For b = 2, equation (2.67) is independent of Q and R, and hence the saddle 
point is undetermined. These are the mathematical statements of the fact that the 
system has no phase transition. That is, with probability 1, the system has no infinite 
cluster for b = 1 and 2. Hence there is no phase transition in the system and the order 
parameters do not exist. However, for b 3 3 ,  we have non-trivial saddle points for 
equation (2.621, subject to the constraint in equation (2.61). For h between 3 and 9, 
the saddle-point solutions are listed in the table. 

n = - 3  

Table 1. Order parameters and cost per site of the spin glass solution and our new solution, 
for b between 3 and 9. R,, = 0 for all b 3 3 in the spin glass solution. 

___ ~~- ~ 

b 3 4 5 6 7 8 9 
QSG 0 6667 0 8000 0 7712 0 8329 0 8175 0 8538 0 8446 
cost$, 0 1111 0 2560 0 4043 0 5724 0 7392 0 9189 1097  
0 0 6820 0 7881 0 7811 0 8256 0 8246 0 8491 0 8499 
R 0 1484 0 1255 0 0904 0 0840 0 0657 0 0630 0 0519 
cost 0 1057 0 2471 0 3962 0 5621 0 7306 0 9087 1088  

3. Discussion 

When we replace the constraint, E ;”= I S ,  = 0, by an exponential penalty term, namely, 
exp[-A(XE1 S,)’] with A >> 1, in the calculation of the canonical partition function, 
we inevitably arrive at the spin glass solution. This solution, even at T = 0 ,  has a 
non-zero fraction of the so-called ‘crazy spins’ [7,  1 1 3 ,  i.e. those spins with zero local 
field. This huge amount of entropy, associated with the crazy spins, compromises the 
exponential penalty term, which is introduced to project out the correct solution 
satisfying E;”=, S, = 0. Apparently, the optimal solution has less entropy, and is thus 
harder to find. 
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When b + CO, our optimal solution approaches the S K  replica symmetric solution. 
Hence there might be replica symmetry breaking for b 3 3. The question of stability 
is left for future development. 

Finally we want to point out that it is possible to study a model of the graph- 
bipartitioning problem, which will contain as two limiting cases the problem with 
average, finite valence and that with fixed, finite valence. We can then study how the 
threshold of non-zero cost function changes from 2 In 2 to 2. It is defined as the 
following: 

J , ,  E {O, J }  with J , ,  = 0 (3.1) 
N i / + l l '  I 1 E J , , = c b J  for I = 0 , 1 , 2  , . . . ,  - - I  (3.2) 

, = / ' + I  , = I  c 

where c, N /  c, cb are integers and cb E { c, c + 1, c + 2, . . . }. Then c = 1 would correspond 
to the problem with fixed, finite valence; c = N would correspond to the problem with 
average, finite valence. 
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Appendix 

In this appendix, we check the self-consistency of the assumptions in equations (2.30), 
(2.31) and (2.44). From equations (3.28) and (2.29), we first derive the saddle-point 
equation satisfied by r :  

1 m 

G = A o r +  c A,Q, 
/ = 1  a l .  c ", 

However, we notice that: 

S"I . . . S"1. 
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The last term in equation (A3) is proportional to m. Hence 1 = r 2  and r = 1 is one of 
the saddle points. 

The saddle-point equation satisfied by Q, is: 

We now check the self-consistency of equations (2.30) and (2.31 1. Substituting equation 
(2.30) into the right-hand side of (A4) and following the derivations of equations (2.36) 
and (2.37), it is easy to show that: 

where X denotes the sum over all possible sets of { k , ;  i = 1 , 2 , .  . . , N - I} with k, E 

{0, 1 , 2 , .  . . , b}. s u m + ( N )  has the same form as that given in equation (A7), except 
that 6 is replaced by 6 - 1 and  i is replaced by N. We see that in the denominator of 
ratio, there are N ! / ( N / 2 ) ! ( N / 2 ) !  terms that survive the integration over X. All of 
them are nonnegative. In the numerator, we have the same number of terms surviving 
the integration over X. However, they are mixed with + and - signs. Hence we must 
have 

(A91 - 1 s ratio s 1 for all p. 
We thus can formally define 

tanh( p h )  = ratio. 

For any given p, equation (A10) gives a one-to-one correspondence between h and 
ratio. We also see that 
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Hence it is self-consistent to define 
r 

Q, = r( h )  tanh'( p h )  dh 

with 
r 

r ( h )  dh  = 1 L 
and ~ ( h )  non-negative for all h. 

equation (2.44) into equation (AS) and using the fact that r = 1, we get 
Next we check the self-consistency of the ansatz in equation (2.44). Substituting 

''8 b ! ( 1 - Q )  '1 [;( Q + R ) ]  'J-'# [:( Q - R ) ]  '-'" 
(U,) ! ( U ,  - U , )  !( b - U , )  ! P - m  lim Q,=E'( , = 1  u , = o  1 ,=o  1 

x lim ratio 
6-m 

lim sum,( i) = e'"[ 1 + tanh( p n i J ) ]  * e-iX[ 1 - tanh( p n i J ) ]  (A131 
P + E  

where ni = 2u, - U ,  - b for i = 1 , 2 , .  . . , N - 1 and uN = 2uN - vN - b + 1. Since 

p h  = tanh-'(ratio) = i In( 1 + ratio) - i In( 1 - ratio) 

and 

lim In[ 1 - tanh(x)] = In 2 - 2x + O(e-*") 
P - =  

we see that 

lim ratio=O + h = O  

lim ratio = 1 j h 2 J  

lim ratio=-1 j h < - J  

P + X  

P - m  

P - =  

and h must occur at IJ with 1 E (0, 1,2,  . . . , b } .  The reason is that we have (1 * tanh p n J )  
with n integer in the expression of ratio. This verifies the self-consistency of 
the assumption that, at T = 0, the auxiliary field distribution function is a sum of series 
of S functions at integer multiples of J. 
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